Interpreting Confidence Intervals

Quantitative Results

Confidence intervals are often included in the output of a statistical analysis. However, confidence intervals can be difficult to understand and interpret. A confidence interval is an indication of a population’s parameters. This means that confidence intervals are an estimate of how certain or uncertain the estimated difference between variables is. A narrower CI indicates a more precise estimate, while a wider CI indicates a less precise estimate.

Additionally, confidence intervals can be used as another method of determining significance. Therefore, if the 95% confidence interval contains the value of zero, then the p value will be greater than .05. This is true if the CI crosses zero, ranging from negative to positive. If the CI does not cross zero, the p-value will be less than .05.

Finally, it can be evaluated at the 90%, 95%, and 99% level. While a 95% CI is the commonly used measure, CI depends on the confidence that the researcher wishes to have for their estimate. Because of this, the choice to use a 90 or a 99% is up to you as the researcher. Along with confidence, a CI is also related to the size of the sample, meaning that the larger the sample size is in a given experiment, the more narrow a confidence interval is.

Need help conducting your analysis? Leverage our 30+ years of experience and low-cost same-day service to complete your results today!

Schedule now using the calendar below.

Share
Two women looking at statistics paper work
Step Boldly to Completing your Research

If you’re like others, you’ve invested a lot of time and money developing your dissertation or project research.  Finish strong by learning how our dissertation specialists support your efforts to cross the finish line.