A moderator variable, commonly denoted as just M, is a third variable that affects the strength of the relationship between a dependent and independent variable. In correlation, a moderator is a third variable that affects the correlation of two variables. In a causal relationship, if x is the predictor variable and y is an outcome variable, then z is the moderator that affects the casual relationship of x and y. Most of the moderator variables measure causal relationship using regression coefficient. The moderator, if found to be significant, can cause an amplifying or weakening effect between x and y. In ANOVA, the moderator variable effect is represented by the interaction effect between the dependent variable and the factor variable.
Does gender effectively moderate the relationship between desire to marry and attitudes of marriage?
Does Z treatment effect the impact of X drug onto Y symptoms?
This is a regression based technique that is used to identify the moderator. To explain how MRA technique works, we can use the following example:
Let
(1)
(2)
(3)
In this equation, if (the interaction between the independent variable and moderator) is not statistically significant, then Z is not a moderator, it is just an independent variable. If is statistically significant, then Z will be a moderator, and thus moderation is supported.
Linear vs. non-linear measurement
In a regression equation, when the relationship between the dependent variable and the independent variable is linear, then the dependent variable may change when the value of the moderator changes. In a linear relationship, the following equation is used to represent the effect:
In this equation, the relationship is linear and represents the interaction effect of the moderator and the independent variable. When the relationship is non-linear, the following equation shows the effect of the moderator variable effect:
In this equation, the relationship between the dependent and the independent variable is non-linear, so and shows the interaction effect. In a repeated measure design moderator, the variable can also be used. In multi-level modeling, if a variable predicts the effect size, that variable is called the moderator.
In this equation, the interaction effect between X and Z measures the moderation effect. Typically, if there is no significant relationship on the dependent variable from the interaction between the moderator and independent variable, moderation is not supported.
Related Pages: